EXAM ADVANCED LOGIC

June 20th, 2017

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Please leave open 10 lines on the first page to give us room for writing down the points.
- Your exam grade is computed as min(10, (the sum of all your points + 10) divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get min(10, (90+10)/10) = 10.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.

Good luck!

- 1. Induction (10 pt) Let $\mathscr{L}_{\neg,\rightarrow}$ be a restricted language of propositional logic based on only operators \neg and \rightarrow (so without \land, \lor and \leftrightarrow).
 - (a) Give an inductive definition of the well-formed formulas of $\mathscr{L}_{\neg,\rightarrow}$.
 - (b) Show by induction that $\{\neg, \rightarrow\}$ is functionally complete, i.e. that every well-formed formula P of propositional logic is equivalent to a formula P' in $\mathscr{L}_{\neg,\rightarrow}$. Prove this in three steps:
 - i. Define P' by induction on well-formed formulas of propositional logic.
 - ii. Show by induction that for every well-formed propositional formula P, the formula P' is in $\mathscr{L}_{\neg,\rightarrow}$.
 - iii. Prove by induction that for every formula P of propositional logic, P' is logically equivalent to P.
- 2. Three-valued logics (10 pt) Using a truth table, determine whether the following inference holds in L_3 :

$$\models_{\mathbf{L}_{2}} ((p \supset q) \supset p) \supset p$$

Write out the full truth table and do not forget to draw a conclusion.

3. Tableaus for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in LP. If the inference is invalid, provide a counter-model.

$$(\neg p \lor r) \land (\neg q \lor r) \vdash_{LP} \neg (p \lor q) \lor r$$

NB: Do not forget to draw a conclusion from the tableau.

4. Fuzzy logic (10 pt) Determine whether the following holds in the fuzzy logic with $D = \{x : x \ge 0.9\}$. If so, explain why. If not, provide a counter-model and explain why not.

$$(p \to q) \to q \models_{0.9} p \lor q$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$\Diamond(\Diamond p \land \Diamond q) \vdash_K \Diamond \Diamond p \land \Diamond \Diamond q$$

NB: Do not forget to draw a conclusion from the tableau.

6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in K_{τ}^{t} . If the inference is invalid, provide a counter-model.

$$\langle F \rangle [P] q \vdash_{K^t_{\tau}} [F] [P] q$$

NB: Do not forget to draw a conclusion from the tableau.

- 7. Completeness (10pt) Let b be a complete open branch of a K_{η} -tableau, and let $I = \langle W, R, v \rangle$ be the interpretation that is *induced* by b. Show that the accessibility relation R of I is extendable, that is, for all $x \in W$, there is a $z \in W$ such that xRz.
- 8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in VK. If the inference is invalid, provide a countermodel.

$$\exists x \Diamond (Px \land Qx) \vdash_{VK} \Diamond \exists x Px \land \Diamond \exists x Qx$$

NB: Do not forget to draw a conclusion from the tableau.

- 9. Default logic (10 pt) The following translation key is given:
 - H(x) x has a homework average of 9.5 or higher
 - F(x) = x is a woman
 - C(x) x is from China
 - A(x) = x studies AI
 - d Yanjing

Consider the following set of default rules:

$$D = \left\{ \delta_1 = \frac{H(x) : F(x)}{F(x)}, \qquad \delta_2 = \frac{C(x) : A(x)}{H(x)}, \qquad \delta_3 = \frac{A(x) : C(x)}{\neg F(x)} \right\},$$

and initial set of facts:

$$W = \{ C(d), \neg C(d) \lor A(d) \}.$$

This exercise is about the default theory T = (W, D); so you only need to apply the defaults to the relevant constant d.

- (a) Of each of the following sequences, state whether it is a *process*; and if so, whether or not the process is *closed*, and whether or not it is *successful*. Briefly explain your answers.
 - i. the empty sequence ()
 - ii. (δ_2)
 - iii. (δ_2, δ_3)
 - iv. $(\delta_2, \delta_3, \delta_1)$
- (b) Draw the process tree of the default theory (W, D).
- (c) What are the extensions of (W, D)?

Bonus; 10 pt This exercise compares the provable formulas of classical propositional logic and RM₃. Consider the language of RM₃ which contains the connectives \neg, \lor, \land and \supset . Does the following statement hold for all wffs A in that language, where the first \vdash stands for tableau provability in classical propositional logic?

"If $\vdash A$, then $\vdash_{RM_3} A$ "

If yes, please explain exactly why the statement holds for all wffs A in the language of RM_3 If no, please provide a wff A and show in detail why that wff forms a counterexample to the statement.

As a reminder, you can find the RM_3 tableau rules for \supset on the next page.

 $\rm RM_3$ tableau rules for \supset

