Exam Advanced Logic

June 20th, 2017

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Please leave open 10 lines on the first page to give us room for writing down the points.
- Your exam grade is computed as $\min (10$, (the sum of all your points +10) divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get $\min (10$, $(90+10) / 10)=10$.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.

Good luck!

1. Induction (10 pt) Let $\mathscr{L}_{\neg, \rightarrow}$ be a restricted language of propositional logic based on only operators \neg and \rightarrow (so without \wedge, \vee and \leftrightarrow).
(a) Give an inductive definition of the well-formed formulas of $\mathscr{L}_{\neg, \rightarrow}$.
(b) Show by induction that $\{\neg, \rightarrow\}$ is functionally complete, i.e. that every well-formed formula P of propositional logic is equivalent to a formula P^{\prime} in $\mathscr{L}_{\neg, \rightarrow}$. Prove this in three steps:
i. Define P^{\prime} by induction on well-formed formulas of propositional logic.
ii. Show by induction that for every well-formed propositional formula P, the formula P^{\prime} is in $\mathscr{L}_{\neg, \rightarrow}$.
iii. Prove by induction that for every formula P of propositional logic, P^{\prime} is logically equivalent to P.
2. Three-valued logics ($\mathbf{1 0} \mathbf{~ p t}$) Using a truth table, determine whether the following inference holds in \mathbf{L}_{3} :

$$
\models_{\mathrm{E}_{3}}((p \supset q) \supset p) \supset p
$$

Write out the full truth table and do not forget to draw a conclusion.
3. Tableaus for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in $\mathbf{L P}$. If the inference is invalid, provide a counter-model.

$$
(\neg p \vee r) \wedge(\neg q \vee r) \vdash_{L P} \neg(p \vee q) \vee r
$$

NB: Do not forget to draw a conclusion from the tableau.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t}$) Determine whether the following holds in the fuzzy logic with $D=$ $\{x: x \geq 0.9\}$. If so, explain why. If not, provide a counter-model and explain why not.

$$
(p \rightarrow q) \rightarrow q \models_{0.9} p \vee q
$$

5. Basic modal tableau ($\mathbf{1 0} \mathbf{~ p t}$) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$
\diamond(\diamond p \wedge \diamond q) \vdash_{K} \diamond \diamond p \wedge \diamond \diamond q
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in K_{τ}^{t}. If the inference is invalid, provide a counter-model.

$$
\langle F\rangle[P] q \vdash_{K_{\tau}^{t}}[F][P] q
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Completeness (10pt) Let b be a complete open branch of a K_{η}-tableau, and let $I=$ $\langle W, R, v\rangle$ be the interpretation that is induced by b. Show that the accessibility relation R of I is extendable, that is, for all $x \in W$, there is a $z \in W$ such that $x R z$.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\exists x \diamond(P x \wedge Q x) \vdash_{V K} \diamond \exists x P x \wedge \diamond \exists x Q x
$$

NB: Do not forget to draw a conclusion from the tableau.
9. Default logic ($\mathbf{1 0} \mathbf{~ p t}$) The following translation key is given:
$H(x) \quad x$ has a homework average of 9.5 or higher
$F(x) \quad x$ is a woman
$C(x) \quad x$ is from China
$A(x) \quad x$ studies AI
$d \quad$ Yanjing
Consider the following set of default rules:

$$
D=\left\{\delta_{1}=\frac{H(x): F(x)}{F(x)}, \quad \delta_{2}=\frac{C(x): A(x)}{H(x)}, \quad \delta_{3}=\frac{A(x): C(x)}{\neg F(x)}\right\}
$$

and initial set of facts:

$$
W=\{C(d), \neg C(d) \vee A(d)\}
$$

This exercise is about the default theory $T=(W, D)$; so you only need to apply the defaults to the relevant constant d.
(a) Of each of the following sequences, state whether it is a process; and if so, whether or not the process is closed, and whether or not it is successful. Briefly explain your answers.
i. the empty sequence ()
ii. $\left(\delta_{2}\right)$
iii. $\left(\delta_{2}, \delta_{3}\right)$
iv. $\left(\delta_{2}, \delta_{3}, \delta_{1}\right)$
(b) Draw the process tree of the default theory (W, D).
(c) What are the extensions of (W, D) ?

Bonus; 10 pt This exercise compares the provable formulas of classical propositional logic and RM_{3}. Consider the language of RM_{3} which contains the connectives \neg, \vee, \wedge and \supset. Does the following statement hold for all wffs A in that language, where the first \vdash stands for tableau provability in classical propositional logic?
"If $\vdash A$, then $\vdash_{R M_{3}} A$ "

If yes, please explain exactly why the statement holds for all wffs A in the language of RM_{3} If no, please provide a wff A and show in detail why that wff forms a counterexample to the statement.

As a reminder, you can find the RM_{3} tableau rules for \supset on the next page.
RM_{3} tableau rules for \supset

